Berechnung der Koordinaten auf Sonne und Planeten aus gemessenen rechtwinkligen Koordinaten

Bereits mit kleinen Fernrohren kann man Sonnenflecke beobachten. Auch auf Mars und Jupiter werden Oberflächendetails sichtbar. Durch eigene Beobachtungensreihen lassen sich Veränderungen feststellen. Wie alt werden die Flecke auf der Sonne? Oder welchen Gebieten auf einer Marskarte entsprechen die beobachteten dunklen Flecke? Solche oder ahnliche Fragen kann man sich selber beantworten. Auch Fotos und Zeichnungen anderer Beobachter kann man in die Auswertung mit einbeziehen. In jedem Fall ist es notwendig, die entaprechenden Koordinaten auf dem jeweiligen Himmelskörper zu bestimmen. Zunächst erhält man aus Beobschtungen, wie Zeichnungen, Fotos oder Messungen mit einem Okularmikrometer, rechtwinklige Koordinaten. Hier folgt eine Anleitung zum Berechnen der entsprechenden Lingen- und Breitengrade. Dazu zunächst einige Grundiagen:

Die fechtwinkilgen Koofdinaten x und geien die gegebenen koordinaten mit dem LaingenmeBsteb Äquatorradius $=1$ und dem Koordinatenursprung. im Mittelpunkt der Somnen- oder Planetenscheibe -(Abb. 1). Meistens beziehen sich aber die Beobachtungsverte auf. den Rand der Scheibe. Vor der nun folgenden Rechnung sind diese Meßwerte unzurechnen.

Die erreichbare Genauigkeit ist von den Ausgangewerten abhängig und nimmt zum Rand der Scheibe hin stark ab. Man sollte vermeiden, die Koordinaten zp genau anzugeben. Sind die rechtwinkligen Koordinaten $z_{*} B$. in Scheibenmitte auf $\pm 0,01$ Äquatorradien genau, entspricht das einer Winkelgenauigkeit von $\pm 0,6$ Grad. Deraus ist zu erkennen, dal es schwierig.ist, Positionen auf einige Zehntelgrade genau zu bestimmen.

Pur den Amateur sind die Oberflgchen von Sonne, Mars, Jupiter und eventuell Satum interessent. Wahrend Sonne und Mars als kugelföraige Körper einfach zu rechnen sind, ist die abgeplattete Gestalt von Jupiter und Saturn problenatisch. Die abgeplattete Form ist von der Deklination der Lrde abhancis. Je grober die Deklination ist, desto nuselformiger erscheint der Planet. Ginstis ist Jupiter, die jehlination weicht nur um etwa 3 Grad ab.

Deshalb genugen die veiter unten auigelihrten Näherungsformeln. Die Berechnung fir Satum ist eupuindiger. Da aber Amateure kaum Oberilschendetails beolschten können, wird dieser Rineplanet hier nicht behandelt.

Außer den Leßwerten werden zum Rechnen folgende physische Ephemeriden aus einem Janrbuch benötigit

Positionswinkel P der Rotationsachse,
Dekilnation D_{t} der Exde und
Zentrelmeridian Z.

Eine Eemerkung am Rando: Es jat auch mbglich, diese Daten selbet zu rechnen.

Sonne und wing

Dieser Rechenweg ist eine aligomeine Lösung für kugelförmige Himmelskörper.

Die gegebenen Koordinaten x und y werden ergenzt durch die auf den Beobachter zeigende z - Koordinates

$$
\begin{equation*}
z=\sqrt{1-x^{2}-y^{2}} \tag{1}
\end{equation*}
$$

Es folgt eine Drehung um die z-Achse entsprechend des Positionswinkels P :

$$
\begin{align*}
& x^{\prime}=x \cos P+y \sin P \tag{2}\\
& y^{\prime}=-x \sin P+y \cos P \tag{3}
\end{align*}
$$

Die Deklination D_{δ} dreht uas Syatam ua die x - achoe:

$$
\begin{align*}
& y^{\prime \prime}=y^{\prime} \cos D_{\delta}+z \sin D_{\delta} \tag{4}\\
& z^{\prime \prime}=-y^{\prime} \sin D_{\delta}+z \cos D_{\delta} \tag{5}
\end{align*}
$$

($z^{\prime \prime}$ wird nur in Fomel (10) benotigt.)

Iic Gesuchton Foordinaten sind:

$$
\begin{align*}
\varphi & =\arcsin y^{\prime \prime} \tag{6}\\
\Delta \lambda & =\arcsin \frac{x^{\prime}}{\cos \varphi} \tag{7}
\end{align*}
$$

$$
\begin{equation*}
\lambda=z+\Delta \lambda \quad \text { für die Sonne } \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\lambda=2-\Delta \lambda \quad \text { sur den Hars } \tag{9}
\end{equation*}
$$

Formel (7) gilt fur $\Delta \lambda=-90^{\circ} \ldots+90^{\circ}$, fiur die praktischen Gegebenheiten Vollig ausreichend. Eine allgemeine Lösung ist:

$$
\begin{equation*}
\Delta \lambda=\operatorname{arc} \tan \frac{x^{\prime}}{z^{\prime \prime}} \tag{1p}
\end{equation*}
$$

Zu beachten: Ist $z^{\prime \prime}$ kleiner Null, dann $180^{\circ} z u \Delta \lambda$ addieren.

Jupiter

Angtelle von (1) gilt:

$$
\begin{equation*}
z=\sqrt{1-x^{2}-1,143 y^{2}} \tag{11}
\end{equation*}
$$

Dann Polgen unverändert (2), (3) und (4).
In die Recinung wird eingefligt:

$$
\begin{equation*}
r=\sqrt{1-0,143 \mathrm{y}^{2}} \tag{12}
\end{equation*}
$$

Die planetozentrischen Koordinaten aind:

$$
\begin{align*}
\varphi^{\prime} & =\arcsin \frac{y^{\prime \prime}}{r} \tag{13}\\
\Delta \lambda & =\arcsin \frac{x^{\prime}}{r \cos \varphi^{\prime}} \tag{14}\\
\lambda & =z-\Delta \lambda \tag{15}
\end{align*}
$$

Infolge der Abplattung weicht die planetographische Breite von der planetozentrischen abs

$$
\begin{equation*}
\varphi=\arctan \frac{\tan \varphi^{\prime}}{0,8746} \tag{16}
\end{equation*}
$$

Beisplel: Hars; gemessene Werte: $x=-0.72 ; 7=+0.38$ physiache Ephem. $1 P=12,80 ; D_{\delta}=-5 ; 80 ; Z=250 ; 50$ (frel gewählte Zahlon)

$$
\begin{array}{rrr}
z=0,58068925 & \varphi= & 27 ; 95 \\
z^{\prime}=-0,61791911 & \Delta \lambda= & -44 ; 39 \text { (Formel 7) } \\
y^{*}=0,53007167 & \lambda=294 ; 89 \\
y^{n}=0,46867577 & \Delta \lambda= & -44 ; 39 \text { (Formel 10) } \\
z^{n}=0,63128361 & \lambda=294 \% 89
\end{array}
$$

Beispiel: Jupiteri gemennene Werte: $x=-0.48$ y $=0.53$
phymiache Ephemi: $P=-18^{0} 0_{5 ;} D_{f}=+2 i^{\circ} 90 ; Z=112_{50}^{0}$ (frel gewalhlte Zahlen)

$$
\begin{array}{lr}
z=0,66972479 & \varphi^{\prime}= \\
x^{\prime}=-0,62336683 & \Delta \lambda=-43 \% 12 \\
y^{*}=0,35030530 & \lambda=155^{\circ} 62 \\
y^{*}=0,38374003 & \varphi=25 \% 69
\end{array}
$$

Literatur: /1/ Wepner, Woligangi Hathematiachea Hilisbuch fur Studierende und Freunde der Astronomie. Diasseldorf 1982.-/2/ Kowalec: Hilfamittel zur Positionsbestimang auf Rieamplaneten. Die Sterne 49 (1973) 4.

Abb. 1

Diese Seiten geben ein unveröffentlichtes Manuskript wieder, das bereits vor 1990 mit Schreibmaschine erstellt wurde. Ich bitte die dadurch bedingt teilweise mangelhafte Qualität zu entschuldigen.

Der Inhalt wurde ebenfalls nicht geändert.

