Grafische Darstellung des Koordinatennetzes auf Sonne, Mond und Planeten

Zur Vorbereitung und Auswertung von Beobachtungen sind die Darstellungen von Sonne, Mond und Planeten mit ihren Koordinatennetzen von Interesse, wie sie von der Erde aus beobachtbar sind. Für die Darstellung der Koordinatennetze gibt es zwei Methoden: Erstens wird die Konstruktion für eine Zeichnung kugelförmiger Himmelskörper beschrieben. Zweitens geht es um mathematische Grundlagen, die für ein Programm verwendet werden können. In diesem Fall wird ein Ellipsoid behandelt, deren Spezialfall die Kugel ist. Für beide Methoden wird die Kenntnis der physischen Ephemeriden vorausgesetzt. Zu beachten sind die unterschiedlichen Rotationsrichtungen, die verschiedenen Längenzählungen (z. B. auf dem Mond) und die Rotationssysteme von Jupiter und Saturn.

Die folgenden Seiten geben unveröffentlichte Manuskripte wieder, die bereits vor 1990 mit Schreibmaschine erstellt wurden. Ich bitte die dadurch bedingt teilweise mangelhafte Qualität zu entschuldigen.

Der Inhalt wurde ebenfalls nicht geändert. Wenn heute zum Beispiel niemand mehr Koordinatennetze auf Papier zeichnen wird, so vermitteln die folgenden Seiten trotzdem anschaulich dieses Thema.

Der Anblick ∇ on Sonne und Planeten indert sich infolge wechselndor iTeigung und Jrehung des inmelsisorpers. Jachstehend wird eine Sethode jeschrieben, mit der sich das jeweilise Koordiatennetz zeichnen lijbt. Iler werden nux die rufeliörmizen Inmalskörper augifihrlich behandelt. Onne den lechenaufiond wesentlich zu erhöhen, kann zen sich bei üpiter durch eine weiter unten beschriebone Jaherung helfen.

Zunachst wird ein Achsenkreuz gezeichnet, siehe Abb. 1. Die xAchse ist eine Parallele zum Himmelsäquator. Senkrecht auf ihr weist die y-Achse zum Nordpol des Himmels. Um den littelpunst wird ein Kreis mit dem Aquatorradius s geschlagen. Die Gerade Z entspricht dem Zentralmeridian. Z ist gegenuber der y-Achse um den Poaitionswinkel P gedreht. Das Vorzelchen der Deklination Dt-dèr Erde legt fest, welcher Pol sichtbar ist. Bei positivem Wert 1at es der Nordpol. Der jeweilige Pol liegt auf dem Zentraimeridian mit dem in Abb, 1 angegebenem Abstand. Die nun Polgenden Längen- und 3reitenkreise sind Ellipsen. In Sonderfall ist bei Deklination $D_{\delta}=0^{\circ}$. Hier sind nur die Längenkreise Ellipsen, dio Breitenkreise Geraden und die Pole liegen am Rend der Scheibe Zum Zeichnen der Bllipsen gibt es verschiedene arglichkeiten. Bel einer wird ein verschlabbarer Streifen entsprechend Abb, 2 verwendet.

Begonnen wird mit dan Breitenkreisen B. Der größte ist der Aquator \mathbb{A} selbst. Die groben Halbachsen stehen jewells senkrecht euf dem Zentralmeridian Z. Aus den Angaben der Abb. 1 errechnen sich die Mafee Nach dem Eintragen der Hilislinie b wird Punkt G festgelegt. in ist der iattelpunkt der Ellipse. Abstand GH ist auf beiden Seiton sleich. Unsichtbare Iinien können je nach Verwendungszweck entfallen. Alle vom Zentralmeridian verschledene Meridiane sind ebenfalls Zllipsen. Sie ghen durch die Pole und schneiden den Aquator z.B. im Punkt K . Die große Halbachse m ist um den fincel γ geneigt:

$$
\gamma=\operatorname{arc} \tan \left(\sin D_{\delta} \tan |\lambda-2|\right)
$$

Senkrecht auf m steht die kleine Helbachse n:

$$
n=\sqrt{\frac{\left(\cos D_{\delta} \sin \gamma\right)^{2}}{1-\left(\cos D_{\delta} \cos \gamma\right)^{2}}}
$$

Mit diesen Ausfihmangen ist ein Koordinatennetztikugelforihiger Korper in beliebiger. Drehumg darstellbar.

Bei Jupiter kann man sich mit einer Naherungsiosung helfen, in dem alle Abstände senkrecht auf dar Geraden ä mit dem Faktor 0,9352 miltiplikiert verdan. Dadurch onthalt dieases Koordinatensyaitem (aeformiente" Ellipsen.

Grundlagen für Computerprogramme

SAhar jexchtung des Abpiattungererhiltnissos wordon die Kodiclamten ainzelnar punite vom plsmotographischan Systen (Inge und urita) in rechtwinklige (oondiacton ungewandelt. Lei jnspure dea noominetenaystens ifegt tin aentrum des nimselsisippors e Die x-icnge ist eine burallale les itimnolsiquatorg und wird nach westen positiv gezalt. jonnrocat aui
 Die z-Achise ist aus die inde gericatet. iagativo "orta bedeuten, das diesor lunkt aui dor ordabgewandton Selto des HLamelskörpers liegt und daher unsicintbar ist. Aufgabe des Computerfroundes lat es nun, ein Erogrann zu ontwickeln, dais einzelne funkte der Uberplache zu Linion des gewlinschten Koordinatennetzes zusammensetzt. in den folgenden Ausfunrungen ist der Legriff "planetozentrisch" sinugenai auch aut some und iond anwendbar.

Das Abplattungsveriniltnis wird durch Xquatorradius a und polredius b bestimat:

$$
\mathrm{Q}=\mathrm{b} / \mathrm{a}=1-\mathrm{f} \quad \mathrm{f}=(\mathrm{a}-\mathrm{b}) / \mathrm{a}
$$

Fur Jupiter betragt $Q=0,93519$ und f ix $\operatorname{satum} Q=0,89236$.

Die Unmiblinie des abgeplatteten Planeten ist abhangig von der Neigung der Ăquatorebene zur Erde (Deklination D). Hit zunehmender Doiklination nimmt die schainbare Abplattung ab. Deshalb wird als acheintarer polradius

$$
b^{\prime}=a \sqrt{1-\left(1-Q^{2}\right) \cos ^{2} v}
$$

eingerihnt.

Die rechtwinkligen Koordinaten der Umpiblinie bei oinem ua don ijttelpunkt lausonden isnkel ψ sind:

$$
\begin{aligned}
& x^{\prime}=a \cos \psi \\
& y^{\prime \prime}=b^{\prime} \sin \psi
\end{aligned}
$$

DE postrichenon Koordinatan bodouten, dol dio Drenuns um COS Fonitionewinisel P noch nicht erpolgte.
 nuaf worgen $a=b$.

Ein beliebiger Punkt auf der Oberfläche ist bestimmt durch Länge und Breite
 as:Exenz $\Delta \lambda$ ansetri. Dabei aibsen untarschiedliche izingonzhlung und die Zotatton beachtot werden, Die augenblickİche Linge des Deridians, der mur Erde zeigt, iat der Zentrozmeritian. Die Lingondifferonzen sind deshaib Abweichtungon yom Zentralmeridian.

Sonne: $\quad \Delta \lambda=\lambda-2 i$
ifond: $\Delta \lambda=\lambda$ - Linge der ondmitte (Grunjage ist die zLilung 180° positiv nach westen und 130° nogativ asol Cston)

选arg, Jupiter und saturn:

$$
\Delta \lambda=2 \|-\lambda
$$

Seabsichtigt man nur eine prinzi pielle Darstellung, kann die gechzung vereinfacht werden, in don man 2 ar $a 0^{\circ}$ setzt und $\Delta \lambda$ von 0 bis 360° laufen 1 ibt.

Soi abseplattoten 2laneton wisd ausgeiend von der planetographischen jreite φ^{\prime} die planetozentrische Breite φ benötigta

$$
\varphi=\arctan \left(Q^{2} \tan \varphi^{\prime}\right)
$$

1. rechtwincligen Koordinaten eines beliebigen Punktes au: dor Oberrliche sind:

$$
\begin{aligned}
& x^{\prime}=\sin \Delta \lambda \cos \varphi \\
& y^{\prime}=Q \sin \varphi \cos D-\cos \Delta \lambda \cos \varphi \sin D \\
& z^{\prime}=Q \sin \varphi \sin D+\cos \Delta \lambda \cos \varphi \cos D
\end{aligned}
$$

Die Koordinate z^{\prime} dient sur zur Intscioidung, ob der Punkt auf der sichtbaren Hilfte dea fimalakörpers liegt. pür funle auf der gichtbaren beite ist $z^{\prime \prime}$ positiv.

Asch Drehus um den Positionswinkel P exhilt man Koordinaton, deron f-Achse wie obea bereits postelelegt, perallel zum himmelsequator verliuit:

$$
\begin{aligned}
& x=x^{\prime} \cos p-y^{\prime} \sin P \\
& y=x^{\prime} \sin y+y^{\prime} \operatorname{con} p
\end{aligned}
$$

Uin ait üasom zomolsata entwickeltes Computorprogramm ist geeignot, auch iur atarly abgeplatteto gilipsoldo und vollebige Delilinationen ein ncturcetreues Soordsnatennetz grophisch daraustolien.

